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Outline

o Goals/Objectives

e Summary of Conclusions from Presentations on
— Seepage, Thermal Seepage and Thermal Hydrology
— Presence and Characteristics of Deliquescent Brines
— Aqueous Chemistry Evolution and Evaporation

— Corrosion Resistance of Alloy 22

e Summary of Answers to Board’s Questions
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Goals/Objectives of DOE Presentations

e Answer questions and concerns raised in the
Board’s November 25, 2003 letter and provide
additional clarification on particular topics related to
repository performance during the “thermal pulse”

e Provide conceptual basis and key data and analyses of
— The thermal hydrologic and thermal seepage evolution

— The composition and deliquescence of salts within the
dust likely to be present on the waste packages

— The thermal chemical evolution of pore fluids in the rock
and, following seepage, the drift

— The corrosion initiation and propagation processes for
the Alloy 22 waste package
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Placing the In-Drift Environment and
Corrosion into a Systems Context

Our presentations today focused on the data used to
develop and substantiate the models used to define the
expected environment on the waste package and
expected degradation characteristics of Alloy 22 in
those environments

Uncertainty in the models and parameters are included
in the systems representation

Low probability events and unlikely processes are
included in the systems representation

The combined effects of low probability events, unlikely
processes and uncertainty in models and parameters
are included in the risk assessment of repository
performance
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Processes Potentially Affecting Corrosion
During the Thermal Pulse

o Drift degradation processes affect the thermal
hydrologic evolution and drip shield performance

e Thermal hydrologic processes (which control the
in-drift temperature and relative humidity) affect the
likely deliquescent conditions on the waste package
surface

o Deliquescent salt chemistry affects the likely
composition of brines on the waste package surface
in the absence of seepage

e Thermal seepage processes affect the likelihood that
aqueous solutions evolved in the rock can contact
the drip shield and/or waste package
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Processes Potentially Affecting Corrosion
During the Thermal Pulse continueq

e Aqueous solution chemistry affects the likely
brines that could contact the drip shield (or the
waste package if the drip shield no longer
provides protection)

e The repassivation and corrosion potentials for
Alloy 22 are affected by the chemistry of the brines
and salts as well as the temperature and crevice

e These potentials in turn affect the likelihood that
localized crevice corrosion will be initiated

e The rate of crevice corrosion is affected by the
chemistry and temperature
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In-Drift Thermal Hydrologic Response -
Temperature and Relative Humidity

o Rock mass thermal conductivity used in models are based on in-situ tests
and include effects of variable lithophysal porosity

e Thermal hydrology models are based on comparison to in-situ tests,
analogs and have been compared to alternative models

e Temperature and humidity calculations include variability and uncertainty
in thermal conductivity

e The likelihood and extent of rockfall and drift degradation have been
addressed in thermal responses

— The insulating effects of rockfall are included in low probability seismic
scenarios

e The effects of natural ventilation have been conservatively ignored in
thermal hydrologic calculations but have been included in evaluating
condensation effects

A reasonable range of thermal hydrologic conditions in the
drift have been developed for use in the risk assessment
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In-Drift Thermal Hydrologic Response -
Temperature and Relative Humidity
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In-Drift Thermal Hydrologic Response -
Temperature and Relative Humidity
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Seepage Into Drifts - During and After
“Thermal Pulse”

Seepage and thermal seepage models are based on in-situ
tests and have been compared to natural analogs and
alternative models

Seepage does not occur when the temperature at the drift
wall is greater than boiling

Seepage, when it occurs is limited to a small fraction of the
percolation flux and about 10-30% of the drip shields

The likelihood and extent of rockfall and drift degradation
have been addressed in thermal seepage responses

A range of thermal hydrologic conditions yield a range
of possible locations and amounts of seepage during
and subsequent to the thermal pulse
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Chemical Evolution of Salts During the
“Thermal Pulse”

No calcium or magnesium chloride salts have been observed in Yucca
Mountain salts

— Surface occurrences are unstable and nearby sources are not known

Ca and Mg chloride salts are unstable at the temperature and humidity
conditions at Yucca Mountain and will react to more stable phases

Tests indicate that even if such salts were present and stable, they would
quickly volatilize

The open system present at Yucca Mountain would allow any acid gas to
disperse and dissolve

Salts likely present in Yucca Mountain dusts are halite, gypsum,
potassium nitrate, calcite, bassanite

— These salts are not aggressive with respect to Alloy 22 corrosion

Salts likely to be present on the waste package during
the thermal pulse do not cause widespread corrosion

1) Department of Energy » Office of Civilian Radioactive Waste Management



Chemical Evolution of Salts During the
“Thermal Pulse”
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Aqueous Chemistry Evolution After the
“Thermal Pulse”

e The chemistry evolution is based on in-situ and laboratory data

e The evolution of pore water chemistry can be simply defined with respect
to major chemistry types

e The initial aqueous chemistries in the unsaturated zone generally evolve
into sulfate or bicarbonate brines

— WO-type waters are only a chloride brine at early times when the temperatures
at the drift wall are significantly above boiling, precluding seepage

— Formation of CaCl, brines is unlikely due to precipitation of calcium in rock
and drifts as calcite, fluorite or stellerite

e These brines do not contact the waste package unless and until the dri
sh#ld has degraded sufficiently to allow liquid flow through the degraded
surface

e The probability of initiating localized corrosion for the sulfate and
carbonate brines is a function of their NO,; and Cl contents which are a
function of relative humidity

A range of aqueous chemical conditions are developed
in the rock that are propagated in the drift dependent
on the thermal hydrologic conditions in the drift
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Aqueous Chemistry Evolution After the
“Thermal Pulse”
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Volume and Chemistry of Possible Brines
Formed in the Drift

e The thermal evolution of the aqueous phases is a very small
volume of water

— Potentially mobile portion is about 1 liter per waste package
— Seepage amounts are ~20 - 40 l/year per waste package

e This volume must be concentrated by several thousand fold to
have chloride concentrations of relevance to localized corrosion

— Evaporated water volumes are ~ 1 - 100 ml/year per waste
package

e As the aqueous fluid is concentrated at lower relative humidities,
the nitrate concentration increases

The range of volumes and concentration of chemical
species is determined by the range of in-drift thermal
hydrologic conditions
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Volume and Chemistry of Possible Brines Formed in the Drift
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Corrosion Resistance of Alloy 22

e Alloy 22 is a highly corrosion resistant metal
— Confirmed by laboratory evaluations in harsh environments
— Verified by industrial experience

e Passive metals have extremely low corrosion rates

— Alloy 22 is passive over a wide range of realistic repository
conditions

— Corrosion rates of passive Alloy 22 range from 1.0 - 0.01
microns per year

— Corrosion rates determined from linear polarization tests and
long term corrosion test facility

Reasonable range of corrosion rates used in general
and local corrosion models
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Corrosion Resistance of Alloy 22
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Localized Corrosion Conditions

Several processes and features prevent dripping onto waste packages
— Thermal (vaporization) barrier, capillary barrier, and drip shield

Where no drips fall on waste package no significant corrosion damage
occurs

Localized corrosion can be initiated if the brine contacting the waste
package has a sufficiently low NO,/CI ratio and the temperature exceeds
a minimum threshold

— The likelihood of both conditions is determined by the thermal-
hydrologic-chemical evolution in the rock and drift and the degradation
of the drip shield

Conditions to support localized corrosion are possible
during Period IV if the NO,/ClI ratio is less than a critical
value, if the temperature is greater than a critical value,

if E_,,, is positive enough, and if severe crevices are

present
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Localized Corrosion Logic Diagram
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Relevant Time Periods for
Localized Corrosion
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Corrosion Initiation and Propagation

Additional testing has been performed to better characterize the
degradation characteristics of Alloy 22 under a range of chemical and
thermal conditions

Measured threshold potential and time evolution of corrosion potential
— Long term open circuit potential ( > 200 tests)
— Cyclic polarization tests ( > 300 tests)
Results indicate effect of NO; inhibition
— NO,:ClI>0.5at100C
— NO,:ClI>0.15at80C

Stifling of localized corrosion observed in potentiostatic tests

Reasonable ranges of threshold and corrosion
potentials are used to evaluate probability of initiation of
localized corrosion
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Corrosion Initiation and Propagation

At temperatures 80°C and 100°C the Critical Crevice

Potential is Higher than the Corrosion Potential for Evidence of Crevice Corrosion Stifling in Alloy 22
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Summary

The Board’s comments in the Nov 25 2003 letter
reflected interpretations from information presented
by DOE and others in the May 2003 meeting

The information presented today answers the
questions raised by the Board

Additional data and analyses completed since last
May have improved the conceptual understanding of
the relevant processes during the thermal pulse

— Additional thermal and seepage testing in the lower
lithophysal rocks

— Additional analyses using alternative models
— Additional analyses of deliquescent salts

— Additional linear and cyclic polarization tests over a
range of chemical and thermal conditions




Conclusions

DOE has addressed the concerns raised by the
Board using additional information

DOE has used multiple lines of evidence to
evaluate the likely in-drift conditions and
degradation characteristics of Alloy 22 during the
thermal pulse

— In-situ and laboratory tests, validated models,
comparison to alternative models, natural analogs

DOE therefore concludes that the conditions
necessary for widespread localized corrosion will
not occur during the thermal pulse




Conclusions

e DOE is including the uncertainty in models and
parameters (as well as “unlikely” events) in a
reasonable representation of repository
performance
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